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Abstract
Gradient networks are defined (Toroczkai and Bassler 2004 Nature 428 716)
as directed graphs formed by local gradients of a scalar field distributed on
the nodes of a substrate network G. We present the derivation for some of
the general properties of gradient graphs and give an exact expression for the
in-degree distribution R(l) of the gradient network when the substrate is a
binomial (Erd ′′os–Rényi) random graph, GN,p, and the scalars are independent
identically distributed (i.i.d.) random variables. We show that in the limit
N → ∞, p → 0, z = pN = const � 1, R(l) ∝ l−1 for l < lc = z,
i.e., gradient networks become scale-free graphs up to a cut-off degree. This
paper presents the detailed derivation of the results announced in Toroczkai
and Bassler (2004 Nature 428 716).

PACS numbers: 89.75.Fb, 89.75.Hc, 89.20.Hh, 89.75.Da

(Some figures in this article are in colour only in the electronic version)

1. Introduction

It is well known [2–5] that a large number of systems are organized into structures best
described by complex networks, or massive graphs. Many of these networks are strongly
heterogeneous, possessing a power-law degree distribution P(k) ∼ k−γ , also called scale-free
networks [5]. These networks are very different from pure random graphs [6] which are
homogeneous structures, and have a ‘bell curve’ Poisson degree distribution. Since many of
the real-world networks are scale-free, the question naturally arises: what mechanisms can
lead to these structures? There are a number of models in the literature, which introduce the
required heterogeneity for the scale-free degree distribution, such as the preferential attachment
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model [7] and its variants [8–10], the copying model [11, 12], fitness-based models [13–15]
and graph optimization models [16, 17]. All these are network evolution models where the
structure of the graph changes in time by changing its nodes and edges according to some
rules, eventually resulting in scale-free structures.

Here we present a different mechanism that can generate power-law degree distributed
networks. The motivation behind our study lies with the main function of networks, namely,
that of transport. Most real-world networks transport entities such as information, material
goods, power, water, oil, gas, forces, etc. Such transport processes are often driven by
local gradients of a scalar. Physical examples include the electric current which is driven
by an electric potential gradient, and heat flow which is driven by a temperature gradient.
The existence of gradients has also been shown to play an important role in social systems,
economics and certainly in biology (e.g., cell migration [18]).

Naturally, the same mechanism will generate flows on complex networks as well. Besides
the obvious examples of traffic flows, power distribution on the grid and waterways, we recall
two, less-known examples, where gradient-induced transport on complex networks plays a
key role: (1) diffusive load balancing schemes used in distributed computation [19] (and
also employed in packet routing on the internet), and (2) reinforcement learning on social
networks with competitive dynamics [20]. In the first example, a computer (or a router) asks
its neighbors on the network for their current job load (or packet load), and then the router
balances its load with the neighbor that has the minimum number of jobs to run (or packets
to route). In this case the scalar at each node is the negative of the number of jobs at that
node, and the flow occurs in the direction of the gradient of this scalar in the node’s network
neighborhood. In the second example, a number of agents/players who are all parts of a
social network, compete in an iterated game based with limited information [20]. At every
step of the game each agent has to decide whose advice to follow before taking an action
(such as placing a bet), in its circle of acquaintances (network neighborhood). Typically, an
agent will try to follow that neighbor who in the past proved to be the most reliable. That
neighbor is recognized using a reinforcement learning mechanism: a score is kept for every
agent measuring its past success at predicting the correct outcome of the game, and then each
agent follows the advice of the agent in its network neighborhood which has the highest score
[20] accumulated up to that point in time. In this case the scalar is the past success score kept
for each agent, and the gradient from an agent points toward the chosen neighbor (with the
highest score in its neighborhood).

Since gradients signify directions where maximum flow is expected, collecting all
gradients on a complex network results in a directed graph that potentially carries the maximum
flow (see below for precise definitions) in the system, and which we call the gradient network.
Naturally, the gradient network can be thought of as the backbone for transport on the
underlying ‘substrate’ network. In this paper we uncover some fundamental properties of
gradient networks on general substrate graphs, and show that they can be scale-free networks
even in the case when the substrate graph is a homogeneous, scaled structure, such as a
binomial (Erd ′′os–Rényi) random graph. These results were first presented in [1] without
mathematical derivations. This paper presents the proofs and derivations in detail, and in
particular for the in-degree distribution of the gradient network it shows two solutions, a
combinatorial and one based on integral transforms. Note that here we only consider the
case of independent identically distributed (i.i.d.) random scalars associated with the nodes
of the substrate graph. As we will see, even in this case, the mathematical derivations are
fairly involved. The more general case of correlated scalar fields has recently been applied
to the study of folding pathways on the energy landscape of polypeptide chains (proteins)
[21]. In this case, a node represents a 3D spatial conformation of the polypeptide and the
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associated scalar is the potential energy of the conformation. Naturally, the potential energy
of the polypeptide conformation is not independent of the conformation and its neighbors on
the conformation network, so the i.i.d. models presented here do not apply. As shown via
numerical simulations in [21], the gradient network there is also a scale-free graph (indicating
that this is a general property), with a connectivity exponent that is sensitive to correlations.
The formalism presented here, however, lays the foundation for more complex and correlated
situations, to be presented in future publications. Network constructions similar to gradient
networks have been studied in [22].

The paper is organized as follows. In section 2, we formulate a mathematical framework
for analyzing the collective properties of gradients on networks, which, as will be demonstrated,
typically organize themselves into a directed network structure without loops (collection of
directed trees). In section 3, we obtain the exact expression for the in-degree distribution
of the gradient network on binomial (Erd ′′os–Rényi) random graphs and i.i.d. random scalar
fields, and show that in the natural scaling limit the gradient network becomes a scale-free
graph with connectivity exponent of γ = −1 (up to a cut-off degree). Section 4 is devoted to
conclusions.

2. Definition of a gradient network

In this section we give the definition of a gradient network as was first introduced in [1], and
highlight some of its general properties. Let us consider that transport can take place on a
fixed network G = G(V,E) which we will call in the remainder, the substrate graph. It has
N nodes, V = {0, 1, . . . , N − 1} and the set of edges E is specified by the adjacency matrix
A = {aij } (aij = 1 if i and j are connected, aij = 0 otherwise, and aii = 0). Given a node
i, we will denote its set of neighbors in G by S

(1)
i = {j ∈ V |aij = 1}. Let us also consider

a scalar field (which could just as well be called potential landscape) h = {h0, . . . , hN−1}
defined on the set of nodes V , so that every node i has a scalar value hi associated with it. We
define the gradient ∇hi of the field h in the node i to be the directed edge ∇hi = (i, µ(i))

which points from i to that neighbor, µ(i) ∈ S
(1)
i ∪ {i} on G at which the scalar field has the

maximum value in S
(1)
i ∪ {i}, i.e.:

µ(i) = argmax
j∈S

(1)
i ∪{i}

(hj ), (1)

see figure 1. According to its classical definition, a gradient vector points in the direction of
the steepest ascent at a point on a continuous (d-dimensional) landscape. The above definition
is a natural generalization to the case when the continuous landscape is replaced by a graph.

Note that µ(i) = i, if i has the largest scalar value in its neighborhood (i.e., in the set
S

(1)
i ∪ {i}), and in this case the gradient edge is a self-loop at that node. Since h always has

a global maximum, there is always at least one self-loop. It is possible that equation (1) has
more than one solution (several equal maxima) in the case of which we say that the scalar field
is degenerate. In this paper we deal only with non-degenerate fields, which is typical when
for example h is a continuous stochastic variable.

This allows us to define the set F of gradient edges on G, together with the vertex set V

form the gradient network, ∇G = ∇G(V, F).
Note that the definitions above do not refer to actual flows through the network. The

definitions so far present a ‘pressure’-like quantity rather than a dynamical quantity such as
current. However, if there are gradients of a scalar along edges of a graph, it will generate
flows through the network. Assuming that all edges have the same ‘conductance’, or transport
properties, the gradient network will be the substructure of the original network which at a
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Figure 1. Definition of a gradient on a network, schematic drawing. The gradient at node
i is a directed edge pointing toward the maximum value of the scalar (node µ) in the node’s
neighborhood.

hik–1

hik+1
ik

h

G
h

undirected edge

Figure 2. There cannot be loops in a non-degenerate ∇G (schematic drawing).

given instant will channel the bulk of the flow, and thus alternatively can be called as the
instantaneous maximum flow subgraph. In general, the scalar field will be evolving in time,
due to the gradients generated currents, and also to possible external sources and sinks on the
network (for example packets are generated and used up at nodes, but they can also be lost).
As a result, the gradient network ∇G will be time-dependent, highly dynamic.

2.1. Some general properties of gradient networks

Here we present a few fundamental structural properties valid for all non-degenerate gradient
networks. The first observation we make about gradient networks is non-degenerate gradient
networks form forests (i.e., there are no loops in ∇G, and it is a union of trees, more exactly
of in-directed, planted pines).

To prove this statement, assume that in contrast, there is a closed path γ ={∇hi1 ,∇hi2 , . . . ,∇him

}
,m � 3 made up only of directed edges from F, see figure 2. Let ik

be the node on this path for which hik = min
{
hi1, hi2 , . . . , him

}
. Node ik has exactly two

neighbors on γ , nodes ik±1, but only one gradient direction, ∇hik pointing away from ik .
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Since hik±1 > hik , none of the neighbors ik±1 will have their gradient edges pointing into ik .
Since there are two edges, (ik, ik−1) and (ik, ik+1), and only one gradient edge from ik , one of
the edges must not be a gradient edge, and thus the loop is not closed, in contradiction with the
assumption that γ is a loop with only gradient edges. Using a similar reasoning we can show
that for non-degenerate scalar fields, there is no continuous path in ∇G connecting two local
maxima of the scalar field h. This means that on a given tree of ∇G there is only one local
maximum of the scalar, and it is the only node with a self-loop on that tree. As a consequence,
the number of trees in the forest equals the number of local maxima of the scalar field h on
G. The fact that ∇G is made of trees (no loops), is advantageous for analytical techniques,
especially if we take into consideration that ∇G is the most important substructure driving the
flow in the network. Note that unless there is exactly one local maximum (and thus global as
well) of h on G,∇G is disconnected into a number of trees and thus ∇G is not a spanning
tree. Since every node has exactly one gradient direction from it, the out-degree of every node
on the gradient network is unity. It also means that ∇G has exactly N nodes and N edges (with
at least one edge being a self-loop). However, the in-degree of a node i, which is the number
of gradient edges pointing into i, can be anything in the range k

(in)
i ∈ {0, 1, . . . , ki}, where ki

is the degree of node i on G. Note that not all edges will necessarily have to have a gradient
direction.

3. The in-degree distribution of a gradient network on random graphs and
random fields

3.1. Summary of the results

In this section, we show that when the substrate graph G is a binomial random graph G = GN,p

[6], and h is an i.i.d. random field over V , given by a distribution η(h), the in-degree distribution

R(l) = Prob.
{
k

(in)
i = l

}
of ∇G obeys the exact expression [1]:

R(l) = 1

N

N−1∑
n=0

(
N − 1 − n

l

)
[1 − p(1 − p)n]N−1−n−l[p(1 − p)n]l , (2)

independently on the particular form of the distribution for the scalars, η(h). The binomial
random graph (also coined in the physics literature as the Erd ′′os–Rényi random graph) is
constructed by taking all pairs (i, j) of N nodes and connecting them with probability p,
independently from other connections. The exact form (2) is obtained after averaging over
randomness both in the scalar field and the substrate graph. As one can see from figure 3,
form (2) is approached relatively fast by the simulations. Figure 3 presents both the curves in
(2) and the result of averaging over 104 independent numerical runs.

We will also show that the gradient network ∇G becomes a scale-free network with
respect to the in-degree distribution, in the scaling limit N → ∞ and p → 0, such that
Np = z = const � 1, up to the cut-off degree lc = z. The in-degree distribution in this limit
is described by the law:

R(l) 
 1

zl
, 0 < l � z. (3)

a behavior which is also apparent from figure 3. This power law is a rather surprising result,
since the substrate graph is a random graph which is not scale-free, its degree distribution (in
the same limit) being Poisson, with a well-defined average degree z (setting the scale) and
faster than exponential decaying tails [6].
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Figure 3. Comparison between the exact formula (2) and convergence of numerics [1]. Here N =
1000, p = 0.1 (z = 100). The numerical values are obtained after averaging over 104 sample
runs.

Gradient networks are not the only scale-free networks that can be induced on GN,p

random graphs. The paper [23] by Lakhina et al reports finding scale-free graphs relative to
the trace-route measurements that are used to sample the structure of the internet. Namely,
they find that the spanning trees obtained this way on GN,p’s have a degree distribution that
obeys the 1/k law. In [24], Clauset and Moore present an analytical approach to this law.
Another method [25], which is based on pruning edges from GN,p, also generates scale-free
structures as a result.

3.2. A combinatorial derivation of the exact expression

In this subsection we give a combinatorial derivation for formula (2) first, for it is the shortest
one. Another approach based on integral transforms is presented in the following subsection,
which actually was our original method, and it had inspired the combinatorial one.

In order to calculate the in-degree distribution R(l), we first distribute the scalars on the
node set V , then find those link configurations which contribute to R(l) when building the
random graph GN,p over these nodes.

Without restricting the generality we will calculate the distribution of in-links for node 0.
Let us consider a set of n nodes from V , that does not contain node 0, and it has the property
that the scalar values at these nodes hi are all larger than h0. We will denote this set by [τ ]n.
The complementary set of [τ ]n in V \{0} will be denoted by C[τ ]n , see figure 4. Note that every
link that connects to node 0 from a node of C[τ ]n which is not connected to [τ ]n is a gradient
link.

In order to have exactly l nodes pointing their gradient edges into node 0, we must fulfil
the following conditions: first, they have to be connected to node 0 and, second, they must
not be connected to the set [τ ]n (otherwise, they would be connected to a node with a scalar
value larger than h0, according to the definition of [τ ]n). The probability for one node to
fulfil these two conditions is p(1 − p)n, and since the links are drawn independently, for l
nodes this probability is [p(1 − p)n]l . We must also require that no other nodes will have
their gradient links pointing into node 0. Obviously, by definition, nodes from [τ ]n will not be

6
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n
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Figure 4. Schematic of the construction given in the main text.

pointing gradients into node 0. Therefore, we have to make sure, that none of the remaining
N − 1 − l − n nodes from C[τ ]n will be pointing into 0. For one such node this will happen
with probability 1 − p(1 − p)n. For all the N − 1 − l − n such nodes this probability will be
[1 − p(1 − p)n]N−1−l−n. Thus, given a specific set [τ ]n, the probability of exactly l in-links
to node 0 is (

N − 1 − n

l

)
[p(1 − p)n]l[1 − p(1 − p)n]N−1−l−n. (4)

The combinatorial factor in (4) counts the number of ways the set of l nodes which point their
gradient edges to node 0, can be chosen from C[τ ]n .

The probability in (4) was computed by fixing h0 and the set [τ ]n. Next, we compute the
probability Qn of such an event for a given n, while letting the field h vary according to its
distribution. The probability for a node to have its scalar value larger than h0 is

γ (h0) =
∫

h0

dh η(h). (5)

The probability to have exactly n nodes with this property is given by

[γ (h0)]
n[1 − γ (h0)]

N−1−n. (6)

The number of ways the n nodes can be chosen from V \{0} is just the binomial
(
N−1

n

)
. Thus,

the total probability Qn will be given by

Qn =
(

N − 1

n

) ∫
dh0 η(h0)[γ (h0)]

n[1 − γ (h0)]
N−1−n = 1

N
, (7)

where the last equality in the above equation is obtained after performing the change of
variables du ≡ dγ (h0) = dh0 η(h0).

As a final step, by combining (7) with (4), and summing over all possible n values, we
arrive at (2).

7
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S (2)
0

S (1)
0

0

j

i

Figure 5. Node 0 has a gradient edge from i, if its scalar value is larger than the scalars of all its
neighbors j �= 0.

3.3. An integral transform based method

Although this method is more involved, it can be used to calculate the in-degree distribution
of gradient networks for substrate graphs other than GN,p, and for some non-i.i.d. scalar
distributions. Calculations for such cases will be presented elsewhere.

When calculating the degree distribution, we have to perform two averages: one
corresponding to the scalar field disorder

〈•〉h =
∫

dh0 · · · dhN−1 η(h0) · · · η(hN−1)•, (8)

and the other to an average over the network (graph ensemble):

〈•〉nw =
∑
a01

· · ·
∑

aN−2N−1

v(a01) · · · v(aN−2N−1)•, (9)

where v(a) = pa(1 − p)1−a, a ∈ {0, 1} and
∑

a ≡ ∑1
a=0. Here G is the binomial random

graph GN,p with N nodes and link-probability p. The integrals in (8) are computed over the
range of the scalar field and the summation in (9) is over all N(N − 1)/2 pairs (i, j) with
i < j .

In order to calculate the in-degree distribution, we define first a counter operator for the
in-links. Without restricting the generality we calculate the in-degree of the gradient network
for node 0 namely, k

(in)
0 . Let us introduce B = I + A, where I is the N × N identity matrix so

bij = δi,j + aij , and the quantities Hi(j) = 1 − bij + bij θ(h0 − hj ) for i, j ∈ V , and i ∈ S
(1)
0 .

Thus, the in-link counter can be written as

k
(in)
0 =

N−1∑
i=1

a0i

N−1∏
j=1

Hi(j). (10)

With the aid of figure 5 we see that indeed this expression will count the number of gradient
edges into node 0: Hi(j) is zero only if the neighbor j of i (except node 0) has a larger scalar
value than node 0, i.e., h0 < hj , otherwise Hi(j) is equal to unity. Therefore a term under
the sum in (10) will be non-zero if and only if for all neighbors j of i (i.e., bij = 1) hj < h0

holds, making the edge (i, 0) to be the gradient edge for node i.

8
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The probability that a node will have l in-degree on the gradient network F, is

R(l) = 〈〈
δ
l,k

(in)
0

〉
h

〉
nw

=
∫ π

−π

dq

2π
eiql

〈〈
e−iqk

(in)
0

〉
h

〉
nw

. (11)

First, we compute the average over the scalar field. (The order of the averages does not matter,
however, it is formally easier this way.) Let us denote

LG(q) = 〈
e−iqk

(in)
0

〉
h

(12)

We have

LG(q) =
∫

dh0 · · ·
∫

dhN−1 η(h0) · · · η(hN−1) e−iq
∑N−1

i=1 a0i

∏N−1
j=1 [1−bij +bij θ(h0−hj )]

Let Mi(m) = ∏m
j=1 Hi(j). So

LG(q) =
∫

dh0 · · ·
∫

dhN−1 η(h0) · · · η(hN−1) e−iq
∑N−1

i=1 a0iMi (N−1). (13)

Using the recursion

Mi(m) = [1 − bim + bimθ(h0 − hm)] Mi(m − 1), (14)

the integral over hN−1 can be performed

LG(q) =
∫

dh0 · · ·
∫

dhN−2 η(h0) · · · η(hN−2)
{
γ (h0) e−iq

∑N−1
i=1 a0iMi (N−2)

+ [1 − γ (h0)] e−iq
∑N−1

i=1 a0i [1−biN−1]Mi(N−2)
}

where γ (x) = ∫ x dy η(y). Performing all the integrals recursively, except for h0, we obtain

LG(q) =
N−1∑
n=0

J (N, n)
∑

[τ ]n∈Pn(N−1)

e−iq
∑N−1

i=1 a0i

∏n
j=1(1−biτ(j)) (15)

where J (N, n) = ∫
dh0 η(h0)[γ (h0)]N−1−n[1−γ (h0)]n. Here [τ ]n = {τ(1), τ (2), . . . , τ (n)}

is an n-subset of the set {1, 2, . . . , N − 1} and Pn(N − 1) denotes the set of all n-subsets of
{1, 2, . . . , N − 1}. We have |Pn(N − 1)| = (

N−1
n

)
. After a change of variables u = γ (h0)

and using du = dγ (h0) = η(h0)h0 the integral J (N, n) yields J (N, n) = 1
N

(
N−1

n

)−1
, i.e., the

in-degree distribution is independent of the choice of the η(h) distribution!
In the following, we perform the network average 〈LG(q)〉nw. For a fixed n-subset [τ ]n,

let us denote

Z[τ ]n (q) ≡ 〈
e−iq

∑N−1
i=1 a0i

∏n
j=1(1−biτ(j))

〉
nw

. (16)

Thus,

〈LG(q)〉nw = 1

N

N−1∑
n=0

(
N − 1

n

)−1 ∑
[τ ]n∈Pn(N−1)

Z[τ ]n (q). (17)

Let

Tn = [τ ]n ∪
n⋃

j=1

S
(1)

τ (j) (18)

be the set of vertices [τ ]n and its neighbors on G.
Note, that

∏n
j=1(1 − biτ(j)) = 1 if and only if i �∈ Tn otherwise it is zero. Therefore,

N−1∑
i=1

a0i

n∏
j=1

(1 − biτ(j)) = the number of neighbors of 0 which do not belong to Tn. (19)

9
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From (9)

Z[τ ]n (q) =
∑
a01

· · ·
∑

aN−2N−1

v(a01) · · · v(aN−2N−1)

N−1∏
i=1

e−iqa0i

∏n
j=1(1−biτ(j)) (20)

Since τ(j) �= 0, ([τ ]n ∈ Pn(N − 1)), the sums over the matrix variables a0i can be performed∑
a0i

v(a0i ) e−iqa0i

∏n
j=1(1−biτ(j)) = 1 − p + p e−iq

∏n
j=1(1−biτ(j)), (21)

and therefore

Z[τ ]n (q) =
∑
a12

· · ·
∑

aN−2N−1

v(a12) · · · v(aN−2N−1)

N−1∏
i=1

[
1 − p + p e−iq

∏n
j=1(1−biτ(j))

]
. (22)

The set of vertices {1, 2, . . . , N − 1} is split into two groups: [τ ]n and its complementary
in {1, 2, . . . , N − 1}. Without changing anything, we can rename the vertices, such that
{1, 2, . . . , n} = [τ ]n and C[τ ]n = {n + 1, n + 2, . . . , N − 1} be the complementary set of [τ ]n.
It is easy to see that only cross-terms (aij involving one node i from [τ ]n and one node j from
C[τ ]n) give non-trivial contribution (i.e., different from unity) in (22). Thus

Z[τ ]n (q) =
N−1∏
i=n+1

∑
a1i

· · ·
∑
ani

v(a1i ) · · · v(ani)
[
1 − p + p e−iq

∏n
j=1(1−aji )

]
(23)

Let α1 = 1 − p and β1 = p. Then∑
a1i

v(a1i )
[
α1 + β1 e−iq(1−a1i )···(1−ani )

] = α2 + β2 e−iq(1−a2i )···(1−ani ) (24)

where α2 = (1 − p)α1 + p and β2 = (1 − p)β1. The summation over the rest of the matrix
elements can be similarly performed to give (for a fixed node i)

αn+1 + βn+1 e−iq . (25)

The coefficients are determined from the recursion{
αk = (1 − p)αk−1 + p, α1 = 1 − p

βk = (1 − p)βk−1, β1 = p
(26)

which obeys αk + βk = 1 for all k. These recursions are easily solved:

αn+1 = 1 − p(1 − p)n, βn+1 = p(1 − p)n. (27)

Thus (25) becomes 1 − p(1 − p)n + p(1 − p)n e−iq . Since for all indices i in (23) the result
of the summations is the same, one finally obtains

Z[τ ]n (q) = [1 − p(1 − p)n(1 − e−iq)]N−1−n. (28)

Because the result in (28) is not specific of the [τ ]n set, for all realizations of [τ ]n, Z[τ ]n (q) is
the same expression, and thus the sum over all realizations of [τ ]n in (17) will generate
the factor |Pn(N − 1)| = (

N−1
n

)
which cancels the combinatorial factor in (17). Thus

〈LG(q)〉nw = 1
N

∑N−1
n=0 Z[τ ]n (q). Plugging this into (11), and performing the integral over

the q variable we obtain

R(l) = 1

N

N−1∑
n=0

(
N − 1 − n

l

)
[1 − p(1 − p)n]N−1−n−l[p(1 − p)n]l (29)

with the usual convention
(
M

m

) = 0 for M < m. Equation (29) is the exact expression for the
in-degree distribution of the gradient network ∇G.
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3.4. Derivation of the 1/l scaling for the in-degree distribution

In order to obtain the scaling 1/l valid in the limit N → ∞, p → 0, such that z = pN =
const � 1, for 0 � l � z, we will use the saddle-point method. We write equation (2)
first in the form R(l) = 1

N

∑N
n=1 rN(n, l) and then exponentiate the argument. Using Stirling’s

formula to the first order (ln(x!) ≈ x(ln x − 1)), one obtains that rN(n, l) ≈ eqN (n,l), where

qN(n, l) = (N − n) ln[(N − n)/e] − l ln(l/e)

− (N − n − l){ln[(N − n − l)/e] − ln(1 − p(1 − p)n−1)}
+ l[ln p + (n − 1) ln(1 − p)]. (30)

To calculate the largest contributor under the sum in (2) we use the saddle-point method:∫
dx ef (x) ≈ √

2π ef (x0)/
√−f ′′(x0) where f ′(x0) = 0. In our case, we thus need to consider

∂qN(n, l)

∂n

∣∣∣∣
n∗(l)

= 0 (31)

where n∗(l) denotes the index of the maximal contributor for a given l. The difficulty we get
into by trying to find n∗(l) from (31) is that the equation cannot be solved explicitly for n∗(l).
To get around this, let us consider instead the derivative

∂qN(n, l)

∂l

∣∣∣∣
l̂(n)

= 0 (32)

defining l̂(n). Performing the derivation the solution is easily found as

l̂(n) = (N − n)p(1 − p)n−1. (33)

Since l̂(n) is a monotonic function of n, it is invertible (l̂′(n) < 0). The inverse of (33) will be
denoted by n̂(l). This means that

∂qN(n, l)

∂l

∣∣∣∣
n̂(l)

= 0. (34)

Next, we observe that l̂(n) satisfies (31) when inserting it into its explicit expression.
Accordingly, it will also be satisfied by n̂(l). Assuming that there is only one solution to
(31) it thus follows that

n∗(l) = n̂(l). (35)

If we now calculate qN(n, l), at the saddle point, we find that qN(n∗(l), l) = 0 (using the fact
that the parametric curve of the maximum can be written as either (n∗(l), l) or (n, l̂(n)) and
thus calculating qN(n, l̂(n))). This means that we need to go one step further in the Stirling
series, in order to calculate the leading piece of eln rN (n,l) at the saddle point. For the saddle
point itself, we use the same expression as previously (obtained with the first-order Stirling
approximation) because as can be shown, the corrections introduced by the next term in the
Stirling approximation are vanishing as N → ∞ and therefore they will be neglected. Thus
using the next order term in the Stirling series (ln(x!) ≈ x(ln x − 1) − ln(

√
x) + ln(

√
2π))

and writing

ln rN(n, l) ≈ qN(n, l) + sN(n, l), (36)

where sN(n, l) is the correction generated this way, we obtain

esN (n∗(l),l) = 1√
2π

√
N − n∗(l)

N − n∗(l) − l

1√
l

= 1√
2π

1√
l

+ O
(

ln z

z

)
. (37)
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Calculating the second derivative ∂2qN(n, l)/∂n2 at the point (33), one finally obtains

∂2qN(n, l)

∂n2
= −l

z2

N2
− lO

( z

N2

)
− lO

(
z3

N3

)
(38)

Combining (38) with (36), (37) in the saddle-point formula, one obtains that

R(l) ≈ 1

zl
, (39)

valid in the domain 1 � l � lc. The cutoff value lc is determined by the validity range of the
saddle-point method: since the function n∗(l) is monotonically decreasing, at l = lc it will hit
the lowest allowed value by the range of the integral (or sum), namely, at n∗(lc) = 1. Since l̂

is the inverse function of n∗, it follows that

lc = l̂(n∗(lc)) = l̂(1) = p(N − 1) = z (40)

meaning that the cutoff for the 1/l scaling law happens at z, which is indeed confirmed by the
numerical simulations shown in figure 3.

4. Conclusions

If the substrate graph is a scale-free network (we used the Barabási–Albert (BA) process with
parameter m to generate the scale-free network [7], but other uncorrelated scale-free graph
models, such as the configuration model [26–28] will lead to similar conclusions as long as
γ > 2), the gradient graph will still be scale-free as we show that via numerical simulations in
[1]. The gradient network actually is a scale-free graph with the same exponent γ . We have
performed (numerical) calculations for many other substrate graphs (both ‘scaled’ and scale-
free) with the general conclusion that gradient networks tend to be power-law degree distributed
graphs, thus offering a robust mechanism for producing such heterogeneous structures.

Note that our analysis did not assume anything about the properties of the edges. Certainly,
if one wants to study actual throughput measures, the transport properties of the edges
(conductance, or ‘cost’) must be specified. In this case, the overall performance of the network
will depend not only on the properties of the gradient graphs but also on the distribution of the
edge conductances. The notion of gradient networks has also been used to study congestion
in transport networks from an optimization point of view, see [1, 30–32].

When deriving our results we made the assumption that the scalars were i.i.d. random
variables. This is certainly not expected to hold in general. However, here we have only
considered the simplest case, the ‘zeroth’-order model. We also studied cases when there are
correlations among the scalars (such as for protein folding landscapes [21]), which will be
presented in future publications. In brief, those results also show that the power-law, or scale-
free character of the gradient network is actually a robust feature. Typically, the correlations
were found to affect the value of the exponent γ of these power laws.

In summary, we have shown that local gradients induced networks naturally form graph
structures with power-law degree distributions. For a number of massive real-world networks,
the network structure is sampled based on observation of flows on them. For such situations
the flow-based observations will likely lead to scale-free structures.
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